

A Basic Course in Number Theory SWAYAM Prabha Course Code - S16

PROFESSOR'S NAME	Prof. Shripad Garge
DEPARTMENT	Mathematics
INSTITUTE	Indian Institute of Technology, Bombay
Course Outline	This course intends to develop the basics of number theory touching upon many essential points such as the prime number theorem, quadratic reciprocity laws, Gauss' theorem on the classification of binary quadratic forms, Brahmagupta-Pell equations, to quote a few. This course will enable a student to learn more advanced topics in number theory.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1	L1	Integers
2	L2	Divisibility and primes
3	L3	Infinitude of primes
4	L4	Division algorithm and the GCD
5	L5	Computing the GCD and Euclid's lemma
6	L6	Fundamental theorem of arithmetic
7	L7	Stories around primes
8	L8	Winding up on `Primes' and introducing `Congruences'
9	L9	Basic results in congruences
10	L10	Residue classes modulo n
11	L11	Arithmetic modulo n, theory and examples
12	L12	Arithmetic modulo n, more examples

13	L13	Solving linear polynomials modulo n - I
14	L14	Solving linear polynomials modulo n - II
15	L15	Solving linear polynomials modulo n - III
16	L16	Solving linear polynomials modulo n - IV
17	L17	Chinese remainder theorem, the initial cases
18	L18	Chinese remainder theorem, the general case and examples
19	L19	Chinese remainder theorem, more examples
20	L20	Using the CRT, square roots of 1 in ℤn
21	21	Wilson's theorem
22	122	Roots of polynomials over ℤp
23	123	Euler ð⊙œ'-function - I
24	124	Euler ð⊙œ'-function - II
25	1 25	Primitive roots - I
26	126	Primitive roots - II
27	1.27	Primitive roots - III
28	1.28	Primitive roots - IV
29	1 20	Structure of Un - I
30	1 20	Structure of Un - II
31	1.21	Quadratic residues
32		The Legendre symbol
33		Quadratic reciprocity law - I
34		Quadratic reciprocity law - II
35	L34 L35	Quadratic reciprocity law - III

36	L36	Quadratic reciprocity law - IV
37	L37	The Jacobi symbol
38	L38	Binary quadratic forms
39	L39	Equivalence of binary quadratic forms
40	L40	Discriminant of a binary quadratic form
41	L41	Reduction theory of integral binary quadratic forms
42	L42	Reduced forms up to equivalence - I
43	L43	Reduced forms up to equivalence - II
44	44	Reduced forms up to equivalence - III
45	1 45	Sums of squares - I
46	1 46	Sums of squares - II
47	47	Sums of squares - III
48	148	Beyond sums of squares - I
49	1 49	Beyond sums of squares - II
50	1.50	Continued fractions - basic results
51	151	Dirichlet's approximation theorem
52	1.52	Good rational approximations
53	153	Continued fraction expansion for real numbers - I
54	L54	Continued fraction expansion for real numbers - II
55	L55	Convergents give better approximations
56	L56	Convergents are the best approximations - I
57	1.57	Convergents are the best approximations - II
58	L58	Quadratic irrationals as continued fractions

59	L59	Some basics of algebraic number theory
60	L60	Units in quadratic fields: the imaginary case
61	L61	Units in quadratic fields: the real case
62	L62	Brahmagupta-Pell equations
63	L63	Tying some loose ends